kVAR to Farad Calculator:
Enter the reactive power in kVAR, supply frequency and voltage. Then choose which unit you need to calculate the capacitance value (mF or μF or F). Then press the calculate button to the kVAR to Capacitor value.
kVAR to Farad Calculation:
kVAR is the SI unit of reactive power and Farad is the SI unit of Capacitor. The capacitance C(μF) in microfarad is equal to 159235000 times of the Reactive Power Q(kVAR) in kVAR divided by the product of frequency F(Hz) in Hertz and the voltage V(V) in volts. Hence, for calculating Capacitor value from kVAR the formula can be written as,
C(μF) = 159235000 x Q(kVAR) / (F(Hz) x V(V)2)
In other words,
Micro Farad = 159235000 x kVAR / (Hz x Volts 2)
Milli Farad = 159235 x kVAR / (Hz x Volts 2)
Farad = 159.235 x kVAR / (Hz x Volts 2)
Example:
Let we take an example of 1 kvar capacitor bank is connected across the 240 voltage system with the operating frequency of 50Hz. Calculate the capacitor values in microfarad, Milli farad and Farad.
Apply our formula,
C(μF) = 159235000 x 1 / (50 x 2402)
= 55.29 Micro farad.
The same can be converted to milli farad and Farad,
C(mF) = 0.05529 mF
C(F) = 0.00005529 F
kVAR to Capacitor Chart:
Look at the table of Capacitance (microfarad) value for the various operating voltage and frequency.
50Hz | 60Hz | |||
kVAR | @240V, | @440V | @240V | @440V |
1 | 55.3 | 16.4 | 46.1 | 13.7 |
2 | 110.6 | 32.9 | 92.1 | 27.4 |
3 | 165.9 | 49.3 | 138.2 | 41.1 |
4 | 221.2 | 65.8 | 184.3 | 54.8 |
5 | 276.4 | 82.2 | 230.4 | 68.5 |
6 | 331.7 | 98.7 | 276.4 | 82.2 |
7 | 387.0 | 115.1 | 322.5 | 96.0 |
8 | 442.3 | 131.6 | 368.6 | 109.7 |
9 | 497.6 | 148.0 | 414.7 | 123.4 |
10 | 552.9 | 164.5 | 460.7 | 137.1 |
11 | 608.2 | 180.9 | 506.8 | 150.8 |
12 | 663.5 | 197.4 | 552.9 | 164.5 |
13 | 718.8 | 213.8 | 599.0 | 178.2 |
14 | 774.1 | 230.3 | 645.0 | 191.9 |
15 | 829.3 | 246.7 | 691.1 | 205.6 |
16 | 884.6 | 263.2 | 737.2 | 219.3 |
17 | 939.9 | 279.6 | 783.3 | 233.0 |
18 | 995.2 | 296.1 | 829.3 | 246.7 |
19 | 1050.5 | 312.5 | 875.4 | 260.5 |
20 | 1105.8 | 329.0 | 921.5 | 274.2 |
21 | 1161.1 | 345.4 | 967.6 | 287.9 |
22 | 1216.4 | 361.9 | 1013.6 | 301.6 |
23 | 1271.7 | 378.3 | 1059.7 | 315.3 |
24 | 1327.0 | 394.8 | 1105.8 | 329.0 |
25 | 1382.2 | 411.2 | 1151.9 | 342.7 |
ok
but how is this formula derived?